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Hypervalent iodine reagents have become extremely popular for effecting a variety of organic
reactions.!2 This is due, in part, to their ambiphilic nature, which is a direct result of the ability to
vary both the apical ligands on iodine and the electronic nature of the aryl group. The character of the
reagent can thus, in principle, be fine-tuned to obtain the desired level of reactivity for a particular
transformation. Recent reports on the nucleophilic functionalization of electron rich aryl ethers with
carbon, oxygen, nitrogen and sulfur m.lcleophiles,3 prompted the publication of our results on a series
of complementary halogenation and oxygenation reactions.®> In this paper, we describe the novel
haloacetoxylation of a series of 1,4-dimethoxynaphthalenes (Scheme 1) with the reagent combination
of iodosobenzene diacetate and trimethylsilyl bromide or chloride.
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In the course of our synthetic studies the bromination of the ethylene ketal 1 was required.
Treatment of 1 with the reagent derived from iodosobenzene diacetate and trimethylsilyl bromide
afforded 3-acetoxy-2-bromo-1,4-dimethoxynaphthalene 2 in 57% yield. This transformation
represents the formal addition of AcOBr to a benzyne. Table 1 summarizes the results of our
investigation of this novel and potentially useful chemistry.

In order to further evaluate the merit of this novel reaction, and thus determine which reaction
was responsible for the ipso-substitution of the ethylene ketal 1, the stoichiometry of the reagent was
modified. Treatment of 1 with iodosobenzene diacetate and trimethylsilyl bromide followed by an
additional amount of iodosobenzene diacetate afforded 3-acetoxy-2-bromo-1,4-dimethoxynaphthalene
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Table 1: Halogenation and Acetoxylation of 1,4-Dimethoxynaphthalene Derivatives
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2 in an improved 75% yield (Table 1, Entry 1). The product of the reaction could then be changed
by simply reducing the amount of iodosobenzene diacetate, which resulted in the exclusive substitution
of the ethylene ketal 1 to furnish the bromide 3 in near quantitative yield (Entry 2). This result implies
that acetoxylation occurs subsequent to the bromination. In order to verify this assumption, the
acetoxylation of the ethylene ketal 1 and the bromide 3 were examined. Attempted acetoxylation of
the ethylene ketal 1 gave mainly recovered starting material. However, treatment of 3 with
iodosobenzene diacetate followed by a catalytic amount of trimethylsilyl bromide afforded 3-acetoxy-2-
bromo-1,4-dimethoxynaphthalene 2 in 76% yield (Entry 3), thus confirming the order of
substitution.8

Despite the inherent novelty of the chemistry, the direct functionalization of the parent 1,4-
dimethoxynaphthalene 4 would be more appealing for synthetic applications. Indeed, treatment of 4
with iodosobenzene diacetate and trimethylsilyl bromide followed by an additional amount of
iodosobenzene diacetate afforded 3-acetoxy-2-bromo-1,4-dimethoxynaphthalene 2 in 80% yield (Entry
4). The 1,4-dimethoxynaphthalene 4 could also be mono-brominated in excellent yield (Entry 5), or
converted to the dibromide 5 via the sequential addition of iodosobenzene diacetate and trimethylsilyl
bromide in 94% overall yield for the one-pot process (Entry 6). Chlorination of the 1,4-
dimethoxynaphthalene 4 was achieved by simply employing trimethylsilyl chloride, which resulted in
the chloride 6 in 83% yield (Entry 7).2 This intermediate could then be acetoxylated under similar
conditions to those employed for the bromide 3 (Entry 3). Treatment of the chloride 6 with
iodosobenzene diacetate followed by a catalytic amount of trimethylsilyl bromide furnished 3-acetoxy-
2-chloro-1,4-dimethoxynaphthalene 7 in 71% yield (Entry 8). Interestingly, the direct
chloroacetoxylation of the ethylene ketal 1 to 7 was unsuccessful. The chloride 6 was also
brominated, to furnish 2-bromo-3-chloro-1,4-dimethoxynaphthalene 8 in excellent yield (Entry 9).

In conclusion, we have developed a novel method for the haloacetoxylation of 1,4-
dimethoxynaphthalenes using hypervalent iodine chemistry. This transformation represents the formal
addition of AcOX to a benzyne, and thus the 1,4-dimethoxynaphthalenes represent benzyne
equivalents. The scope and proposed mechanisms by which these novel transformations are thought
to proceed will be reported in a full account of this work.
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